Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transgenic Res ; 33(1-2): 67-74, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573428

RESUMO

Genome editing via CRISPR/Cas has enabled targeted genetic modifications in various species, including plants. The requirement for specific protospacer-adjacent motifs (PAMs) near the target gene, as seen with Cas nucleases like SpCas9, limits its application. PAMless SpCas9 variants, designed with a relaxed PAM requirement, have widened targeting options. However, these so-call PAMless SpCas9 still show variation of editing efficiency depending on the PAM and their efficiency lags behind the native SpCas9. Here we assess the potential of a PAMless SpCas9 variant for genome editing in the model plant Physcomitrium patens. For this purpose, we developed a SpRYCas9i variant, where expression was optimized, and tested its editing efficiency using the APT as a reporter gene. We show that the near PAMless SpRYCas9i effectively recognizes specific PAMs in P. patens that are not or poorly recognized by the native SpCas9. Pattern of mutations found using the SpRYCas9i are similar to the ones found with the SpCas9 and we could not detect off-target activity for the sgRNAs tested in this study. These findings contribute to advancing versatile genome editing techniques in plants.


Assuntos
Bryopsida , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Mutação , Bryopsida/genética , Genoma de Planta/genética
2.
J Exp Bot ; 74(19): 6176-6187, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37243510

RESUMO

Efficient and precise gene editing is the gold standard of any reverse genetic study. The recently developed prime editing approach, a modified CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein] editing method, has reached the precision goal but its editing rate can be improved. We present an improved methodology that allows for routine prime editing in the model plant Physcomitrium patens, whilst exploring potential new prime editing improvements. Using a standardized protoplast transfection procedure, multiple prime editing guide RNA (pegRNA) structural and prime editor variants were evaluated targeting the APT reporter gene through direct plant selection. Together, enhancements of expression of the prime editor, modifications of the 3' extension of the pegRNA, and the addition of synonymous mutation in the reverse transcriptase template sequence of the pegRNA dramatically improve the editing rate without affecting the quality of the edits. Furthermore, we show that prime editing is amenable to edit a gene of interest through indirect selection, as demonstrated by the generation of a Ppdek10 mutant. Additionally, we determine that a plant retrotransposon reverse transcriptase enables prime editing. Finally, we show for the first time the possibility of performing prime editing with two independently coded peptides.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , DNA Polimerase Dirigida por RNA
3.
Plant J ; 113(5): 1049-1061, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606401

RESUMO

Plants exposed to light fluctuations are protected from photodamage by non-photochemical quenching (NPQ), a reversible mechanism that enables dissipation of excess absorbed energy as heat, which is essential for plant fitness and crop productivity. In plants NPQ requires the presence of the membrane protein PsbS, which upon activation interacts with antenna proteins, inducing their dissipative conformation. Here, we exploited base editing (BE) in the moss Physcomitrium patens to introduce specific amino acid changes in vivo and assess their impact on PsbS activity, targeting transmembrane regions to investigate their role in essential protein-protein interactions. This approach enabled the recognition of residues essential for protein stability and the identification of a hydrophobic cluster of amino acids impacting PsbS activity. This work provides new information on the molecular mechanism of PsbS while also demonstrating the potential of BE approaches for in planta gene function analysis.


Assuntos
Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Edição de Genes , Complexos de Proteínas Captadores de Luz/metabolismo
4.
Sci Rep ; 12(1): 9330, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35665758

RESUMO

CRISPR and TALENs are efficient systems for gene editing in many organisms including plants. In many cases the CRISPR-Cas or TALEN modules are expressed in the plant cell only transiently. Theoretically, transient expression of the editing modules should limit unexpected effects compared to stable transformation. However, very few studies have measured the off-target and unpredicted effects of editing strategies on the plant genome, and none of them have compared these two major editing systems. We conducted, in Physcomitrium patens, a comprehensive genome-wide investigation of off-target mutations using either a CRISPR-Cas9 or a TALEN strategy. We observed a similar number of differences for the two editing strategies compared to control non-transfected plants, with an average of 8.25 SNVs and 19.5 InDels for the CRISPR-edited plants, and an average of 17.5 SNVs and 32 InDels for the TALEN-edited plants. Interestingly, a comparable number of SNVs and InDels could be detected in the PEG-treated control plants. This shows that except for the on-target modifications, the gene editing tools used in this study did not show a significant off-target activity nor unpredicted effects on the genome, and did not lead to transgene integration. The PEG treatment, a well-established biotechnological method, in itself, was the main source of mutations found in the edited plants.


Assuntos
Edição de Genes , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Plantas/genética , Plantas Geneticamente Modificadas/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
5.
Plant Sci ; 316: 111162, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35151447

RESUMO

Since its discovery and first applications for genome editing in plants, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology has revolutionized plant research and precision crop breeding. Although the classical CRISPR-Cas9 system is a highly efficient tool for disruptive targeted mutagenesis, this system is mostly inefficient for the introduction of precise and predictable nucleotide substitutions. Recently, Prime Editing technology has been developed, allowing the simultaneous generation of nucleotide transitions and transversions but also short defined indels. In this study, we report on the successful use of Prime Editing in two plants of interest: the plant model Physcomitrium patens and the tetraploid and highly heterozygous potato (Solanum tuberosum). In both cases editing rates were lower than with other CRISPR-Cas9 based techniques, but we were able to successfully introduce nucleotide transversions into targeted genes, a unique feature of Prime Editing. Additionally, the analysis of potential off-target mutation sites in P. patens suggested very high targeting fidelity in this organism. The present work paves the way for the use Prime Editing in Physcomitrium patens and potato, however highlighting the limitations that need to be overcome for more efficient precision plant breeding.


Assuntos
Solanum tuberosum , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma de Planta , Melhoramento Vegetal , Solanum tuberosum/genética , Tetraploidia
6.
New Phytol ; 230(3): 1258-1272, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421132

RESUMO

CRISPR-Cas9 has proven to be highly valuable for genome editing in plants, including the model plant Physcomitrium patens. However, the fact that most of the editing events produced using the native Cas9 nuclease correspond to small insertions and deletions is a limitation. CRISPR-Cas9 base editors enable targeted mutation of single nucleotides in eukaryotic genomes and therefore overcome this limitation. Here, we report two programmable base-editing systems to induce precise cytosine or adenine conversions in P. patens. Using cytosine or adenine base editors, site-specific single-base mutations can be achieved with an efficiency up to 55%, without off-target mutations. Using the APT gene as a reporter of editing, we could show that both base editors can be used in simplex or multiplex, allowing for the production of protein variants with multiple amino-acid changes. Finally, we set up a co-editing selection system, named selecting modification of APRT to report gene targeting (SMART), allowing up to 90% efficiency site-specific base editing in P. patens. These two base editors will facilitate gene functional analysis in P. patens, allowing for site-specific editing of a given base through single sgRNA base editing or for in planta evolution of a given gene through the production of randomly mutagenised variants using multiple sgRNA base editing.


Assuntos
Bryopsida , Bryopsida/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Mutagênese Sítio-Dirigida
7.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033083

RESUMO

Genome editing has become a major tool for both functional studies and plant breeding in several species. Besides generating knockouts through the classical CRISPR-Cas9 system, recent development of CRISPR base editing holds great and exciting opportunities for the production of gain-of-function mutants. The PAM requirement is a strong limitation for CRISPR technologies such as base editing, because the base substitution mainly occurs in a small edition window. As precise single amino-acid substitution can be responsible for functions associated to some domains or agronomic traits, development of Cas9 variants with relaxed PAM recognition is of upmost importance for gene function analysis and plant breeding. Recently, the SpCas9-NG variant that recognizes the NGN PAM has been successfully tested in plants, mainly in monocotyledon species. In this work, we studied the efficiency of SpCas9-NG in the model moss Physcomitrella patens and two Solanaceae crops (Solanum lycopersicum and Solanum tuberosum) for both classical CRISPR-generated gene knock-out and cytosine base editing. We showed that the SpCas9-NG greatly expands the scope of genome editing by allowing the targeting of non-canonical NGT and NGA PAMs. The CRISPR toolbox developed in our study opens up new gene function analysis and plant breeding perspectives for model and crop plants.


Assuntos
Bryopsida/genética , Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Solanum lycopersicum/genética , Solanum tuberosum/genética , Substituição de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Streptococcus pyogenes/enzimologia
8.
Front Plant Sci ; 10: 588, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143199

RESUMO

The XPF-ERCC1 complex, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair, and homologous recombination. XPF-ERCC1 incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here, we have examined the role of the XPF-ERCC1 complex in the model bryophyte Physcomitrella patens which exhibits uniquely high gene targeting frequencies. We undertook targeted knockout of the Physcomitrella ERCC1 and XPF genes. Mutant analysis shows that the endonuclease complex is essential for resistance to UV-B and to the alkylating agent MMS, and contributes to the maintenance of genome integrity but is also involved in gene targeting in this model plant. Using different constructs we determine whether the function of the XPF-ERCC1 endonuclease complex in gene targeting was removal of 3' non-homologous termini, similar to SSA, or processing of looped-out heteroduplex intermediates. Interestingly, our data suggest a role of the endonuclease in both pathways and have implications for the mechanism of targeted gene replacement in plants and its specificities compared to yeast and mammalian cells.

9.
Plant Biotechnol J ; 17(9): 1736-1750, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30784179

RESUMO

In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus-resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss-of-function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR-nCas9-cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single-point mutation through C-to-G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome-editing technologies offers a feasible solution for engineering transgene-free genetic resistance in plants, even across species barriers.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença/genética , Fator de Iniciação 4E em Eucariotos/genética , Edição de Genes , Doenças das Plantas/genética , Potyvirus/patogenicidade , Alelos , Arabidopsis/genética , Arabidopsis/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
10.
New Phytol ; 222(3): 1380-1391, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636294

RESUMO

Double-stranded breaks can be repaired by different mechanisms such as homologous recombination (HR), classical nonhomologous end joining (C-NHEJ) and alternative end joining (Alt-EJ). Polymerase Q (POLQ) has been proposed to be the main factor involved in Alt-EJ-mediated DNA repair. Here we describe the role of POLQ in DNA repair and gene targeting in Physcomitrella patens. The disruption of the POLQ gene does not influence the genetic stability of P. patens nor its development. The polq mutant shows the same sensitivity as wild-type towards most of the genotoxic agents tested (ultraviolet (UV), methyl methanesulfonate (MMS) and cisplatin) with the notable exception of bleomycin for which it shows less sensitivity than the wild-type. Furthermore, we show that POLQ is involved in the repair of CRISPR-Cas9-induced double-stranded breaks in P. patens. We also demonstrate that POLQ is a potential competitor and/or inhibitor of the HR repair pathway. This finding has a consequence in terms of genetic engineering, as in the absence of POLQ the frequency of gene targeting is significantly increased and the number of clean two-sided HR-mediated insertions is enhanced. Therefore, the control of POLQ activity in plants could be a useful strategy to optimize the tools of genome engineering for plant breeding.


Assuntos
Bryopsida/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Sequência de Bases , Bleomicina/farmacologia , Bryopsida/efeitos dos fármacos , Bryopsida/efeitos da radiação , Cisplatino/farmacologia , Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/genética , Instabilidade Genômica , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/efeitos da radiação , Metanossulfonato de Metila/farmacologia , Mutação/genética , Taxa de Mutação , Fenótipo , Raios Ultravioleta
11.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669298

RESUMO

Genome editing tools have rapidly been adopted by plant scientists for gene function discovery and crop improvement. The current technical challenge is to efficiently induce precise and predictable targeted point mutations valuable for crop breeding purposes. Cytidine base editors (CBEs) are CRISPR/Cas9 derived tools recently developed to direct a C-to-T base conversion. Stable genomic integration of CRISPR/Cas9 components through Agrobacterium-mediated transformation is the most widely used approach in dicotyledonous plants. However, elimination of foreign DNA may be difficult to achieve, especially in vegetatively propagated plants. In this study, we targeted the acetolactate synthase (ALS) gene in tomato and potato by a CBE using Agrobacterium-mediated transformation. We successfully and efficiently edited the targeted cytidine bases, leading to chlorsulfuron-resistant plants with precise base edition efficiency up to 71% in tomato. More importantly, we produced 12.9% and 10% edited but transgene-free plants in the first generation in tomato and potato, respectively. Such an approach is expected to decrease deleterious effects due to the random integration of transgene(s) into the host genome. Our successful approach opens up new perspectives for genome engineering by the co-edition of the ALS with other gene(s), leading to transgene-free plants harboring new traits of interest.


Assuntos
Agrobacterium/fisiologia , Sistemas CRISPR-Cas , Citidina/genética , Edição de Genes , Técnicas de Transferência de Genes , Solanum lycopersicum/genética , Solanum tuberosum/genética , Marcação de Genes , Genes de Plantas , Técnicas de Genotipagem , Análise de Sequência de DNA , Transformação Genética
12.
Plant J ; 95(1): 168-182, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29681058

RESUMO

High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.


Assuntos
Bryopsida/genética , Conjuntos de Dados como Assunto , Genes de Plantas/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma/genética
13.
Methods ; 121-122: 103-117, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28478103

RESUMO

Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in.


Assuntos
Proteínas de Bactérias/genética , Bryopsida/genética , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes/métodos , Técnicas de Introdução de Genes , Técnicas de Transferência de Genes , RNA Guia de Cinetoplastídeos/genética , Agrobacterium/genética , Agrobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Endonucleases/metabolismo , Marcação de Genes/métodos , Genoma de Planta , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por Recombinação
14.
Plant Biotechnol J ; 15(1): 122-131, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27368642

RESUMO

The ability to address the CRISPR-Cas9 nuclease complex to any target DNA using customizable single-guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single-guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2-fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end-joining (alt-EJ)-driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology-driven repair (HDR) at the target locus but also that Cas9-induced double-strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR-mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR-induced HDR is only partially mediated by the classical homologous recombination pathway.


Assuntos
Proteínas de Arabidopsis/genética , Bryopsida/enzimologia , Bryopsida/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Marcação de Genes/métodos , Mutagênese , Rad51 Recombinase/genética , Adenina/análogos & derivados , Adenina/farmacologia , Reparo do DNA por Junção de Extremidades , Endonucleases , Engenharia Genética/métodos , Genoma de Planta , Recombinação Homóloga , Plantas Geneticamente Modificadas , Protoplastos , Rad51 Recombinase/metabolismo , Deleção de Sequência , Homologia de Sequência , Streptococcus pyogenes/genética , Transformação Genética
15.
G3 (Bethesda) ; 6(11): 3647-3653, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27613750

RESUMO

Powerful genome editing technologies are needed for efficient gene function analysis. The CRISPR-Cas9 system has been adapted as an efficient gene-knock-out technology in a variety of species. However, in a number of situations, knocking out or modifying a single gene is not sufficient; this is particularly true for genes belonging to a common family, or for genes showing redundant functions. Like many plants, the model organism Physcomitrella patens has experienced multiple events of polyploidization during evolution that has resulted in a number of families of duplicated genes. Here, we report a robust CRISPR-Cas9 system, based on the codelivery of a CAS9 expressing cassette, multiple sgRNA vectors, and a cassette for transient transformation selection, for gene knock-out in multiple gene families. We demonstrate that CRISPR-Cas9-mediated targeting of five different genes allows the selection of a quintuple mutant, and all possible subcombinations of mutants, in one experiment, with no mutations detected in potential off-target sequences. Furthermore, we confirmed the observation that the presence of repeats in the vicinity of the cutting region favors deletion due to the alternative end joining pathway, for which induced frameshift mutations can be potentially predicted. Because the number of multiple gene families in Physcomitrella is substantial, this tool opens new perspectives to study the role of expanded gene families in the colonization of land by plants.

16.
Gene ; 526(2): 299-308, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23747397

RESUMO

p97/CDC48 is a major AAA-ATPase that acts in many cellular events such as ubiquitin-dependent degradation and membrane fusion. Its specificity depends on a set of adaptor proteins, most of them containing the ubiquitin regulatory X (UBX) domain. Using a differential hybridization system, we isolated a UBX-containing protein that is expressed during the early phase of male gametophyte development in the crop Brassica napus and isolated and characterized its closest Arabidopsis thaliana homolog, AtPUX7. The AtPUX7 gene is expressed broadly in both the sporophyte and gametophyte due to regulation inferred by its first intron. The subcellular localization of AtPUX7 was assigned mainly to the nucleus in both the sporophyte and in pollen, mirroring the AAA-ATPase AtCDC48A localization. Furthermore, AtPUX7 interacts specifically with AtCDC48A in yeast as well as in planta in the nucleus. This interaction was mediated through the AtPUX7 UBX domain, which is located at the protein C-terminus, while an N-terminal UBA domain mediated its interaction with ubiquitin. Consistent with those results, a yeast-three hybrid analysis showed that AtPUX7 can act as a bridge between AtCDC48A and ubiquitin, suggesting a role in targeted protein degradation. It is likely that AtPUX7 acts redundantly with other members of the Arabidopsis PUX family because a null Atpux7-1 mutant does not display obvious developmental defects.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ordem dos Genes , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons , Dados de Sequência Molecular , Mutação , Fenótipo , Pólen/genética , Pólen/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo
17.
BMC Plant Biol ; 10: 158, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20682047

RESUMO

BACKGROUND: The proteasome subunit RPT5, which is essential for gametophyte development, is encoded by two genes in Arabidopsis thaliana; RPT5a and RPT5b. We showed previously that RPT5a and RPT5b are fully redundant in the Columbia (Col-0) accession, whereas in the Wassilewskia accession (Ws-4), RPT5b does not complement the effect of a strong rpt5a mutation in the male gametophyte, and only partially complements rpt5a mutation in the sporophyte. RPT5bCol-0 and RPT5bWs-4 differ by only two SNPs, one located in the promoter and the other in the seventh intron of the gene. RESULTS: By exploiting natural variation at RPT5b we determined that the SNP located in RPT5b intron seven, rather than the promoter SNP, is the sole basis of this lack of redundancy. In Ws-4 this SNP is predicted to create a new splicing branchpoint sequence that induces a partial mis-splicing of the pre-mRNA, leading to the introduction of a Premature Termination Codon. We characterized 5 accessions carrying this A-to-T substitution in intron seven and observed a complete correlation between this SNP and both a 10 to 20% level of the RPT5b pre-mRNA mis-splicing and the lack of ability to complement an rpt5a mutant phenotype. CONCLUSION: The accession-dependent unequal redundancy between RPT5a and RPT5b genes illustrates an example of evolutionary drifting between duplicated genes through alternative splicing.


Assuntos
Adenosina Trifosfatases , Processamento Alternativo , Proteínas de Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação/genética
18.
Plant Cell ; 21(2): 442-59, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19223514

RESUMO

We investigated the role of the ubiquitin proteasome system (UPS), which allows proteins to be selectively degraded, during gametophyte development in Arabidopsis thaliana. Three mutant alleles altering the UPS were isolated in the Wassilewskija (Ws) accession: they affect the Regulatory Particle 5a (RPT5a) gene, which (along with RPT5b) encodes one of the six AAA-ATPases of the proteasome regulatory particle. In the heterozygous state, all three mutant alleles displayed 50% pollen lethality, suggesting that RPT5a is essential for male gametophyte development. However, a fourth mutant in the Columbia (Col) accession did not display such a phenotype because the RPT5b Col allele complements the rpt5a defect in the male gametophyte, whereas the RPT5b Ws allele does not. Double rpt5a rpt5b mutants showed a complete male and female gametophyte lethal phenotype in a Col background, indicating that RPT5 subunits are essential for both gametophytic phases. Mitotic divisions were affected in double mutant gametophytes correlating with an absence of the proteasome-dependent cyclinA3 degradation. Finally, we show that RPT5b expression is highly increased when proteasome functioning is defective, allowing complementation of the rpt5a mutation. In conclusion, RPT5 subunits are not only essential for both male and female gametophyte development but also display accession-dependent redundancy and are crucial in cell cycle progression.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Complexo de Endopeptidases do Proteassoma/fisiologia , Subunidades Proteicas/fisiologia , Adenosina Trifosfatases/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retroalimentação Fisiológica , Mitose/genética , Mitose/fisiologia , Dados de Sequência Molecular , Pólen/genética , Pólen/crescimento & desenvolvimento , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...